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Chapter 1

Dynamic control in new rob ot structures: Can we
learn nonlinear functions of high dimensionalit y?

Patric k van der Smagt
Institute for Robotics and System Dynamics

German AerospaceCenter
P. O. Box 1116,82230Wessling

GERMANY
email: smagt@dlr.de

Abstract

If robots are ever to migrate away from factory °o ors,
light-weight concepts are required. However, the novel
actuator structures used for such robots results in in-
creasingly di±cult dynamics. Control theory cannot
cope without learning anymore, but even parameter-
ized models are too inexact to be used. We present the
problematics in current day robotics.

1.1 In tro duction

Recent successesin robotics have increased the
¯eld of application and acceptationof robots. Nev-
ertheless,industrial robotics still has to go a long
way. The applicabilit y of classicalrobots remains
limited to factory °oors.

Research lab robotics is increasingly moving to-
wards novel actuator schemeswith motors which
have a high force-to-weight ratio, are rather small
(about 1" £ 1" £ 2"), and are thereforeuseful in the
construction of light-weight robot arms. Due to the
elasticity of the materials usedand the compliance
(which is also changing due to wear-and-tear), ac-
tuators consistingof agonist-antagonist drive pairs
help in maintaining accurate positioning without
recalibration, as well as in controlling the sti®ness
of a joint.

However, when multiple of such joints are used
to construct a robot arm, the whole structure is
very compliant (in comparisonto traditional robot
arms), and stable control becomesincreasinglydif-
¯cult up to impossiblewith known control meth-
ods. The only working solution which is usedsofar
consistsof low-speedcontrol using (approximated)
inverseJacobians of the robot arm. This control
method, however, is either slow or inaccurate.

Clearly, the chosenrobot arm construction is grow-
ing towards an increaseddegreeof anthropomor-
phism. Control algorithms, on the other hand, do
not. The successthat the biological cerebellum

has in controlling anthropomorphic arms is in no
way matched by arti¯cial neural or other control
algorithms, since, to date, the complexity of the
function that has to be computed seemsto be pro-
hibitiv e. One outstanding problem is that, when
controlling the tra jectory of a joint, the position
µ, velocity _µ, and acceleration Äµ of all connected
joints in°uence that tra jectory. This means that
each joint is controlled depending on 3k variables
(where k ¸ 6 is the number of degrees-of-freedom
of the robot arm). With highly compliant robot
arms, the relationship between the 3k variables
is very complex and highly nonlinear, and there-
fore very hard to learn. The approach of using
recurrent networks which are structurally capable
of computing internal representations of _µ and Äµ
have not yet beensuccessfulin solving more than
toy problems.

1.2 Problems in rob ot dynamics

The dynamics of a generalrobot arm can be writ-
ten as

¿ = M (µ)Äµ + C(µ)
h

_µ _µ
i

+ D(µ)
h

_µ
2
i

+ F (µ; _µ) + G(µ) (1.1)

where ¿ is a k-vector of torques exerted by the
links, and µ, _µ, and Äµ are k-vectors denoting
the positions, velocities, and accelerationsof the
k joints. [ _µ _µ] and [ _µ

2
] are vectors

h
_µ _µ

i
=

h
_µ1

_µ2; _µ1
_µ3; : : : ; _µk ¡ 1

_µk

i T
; (1.2)

h
_µ

2
i

=
h

_µ2
1 ; _µ2

2 ; : : : ; _µ2
k

i
; (1.3)

M (µ) is the matrix of inertia (the mass matrix),
C(µ) is the matrix of Coriolis coe±cients, D (µ) is
the matrix of centrifugal coe±cients, F (µ; _µ) is a
friction term, and G(µ) is the gravit y working on
the joints.
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1.2.1 A taxonom y of problematics in
rob ot dynamics

The dynamics of a robot arm are in°uenced by the
following parts:
(1) the actuators . A tendency exists towards us-
ing DC motors or step motors for generating the
required force; however, pneumatic arti¯cial mus-
cleshave alsoreceived considerableattention. The
dynamic behaviour of an actuator is an important
part of the robot arm dynamics.
(2) the connection between the actuators
and the links (e.g., gear boxes). With a ten-
dency towards light-weight robot arms, for DC or
step motor basedrobot arms it is customary to use
high-ratio gearboxessuch that the motors usedcan
bekept small and light. On the downside,however,
is a considerableelasticity, such that both the rota-
tion at the motor sideand at the link sidemust be
measured.Direct drive robots are also under con-
sideration; yet, the motors have a very low force-
to-weight ratio, and are therefore not suitable for
light-weight robots.
(3) the links . Finally, the dynamics of the con-
struction has to be taken into account. Very light
weight structures may be °exible, leading to a very
complex control scheme. It is customary to con-
struct a robot arm to ensurethat this part can be
neglected.

The rigid body assumption

The simplest kind of robot arm consists of rigid
bodies which are connected by rigid links. This
assumption is approximately true for industrial
robots; the construction of the robot arm is thus
that any deformation of links and joints can be ne-
glected. Even current-day research robots are con-
structed with this principle in mind; even though
materials are light-weight, they are supposedto be
strong enough not to be °exible, even when pay-
loads are carried. In this case adaptive control
is done by linearization of the control equation.
Eq. (1.1) is simpli¯ed in order to obtain:

¿ = Y(µ; _µ; _µ r ; Äµ r )w (1.4)

where w are the parameterswhich are estimated.

When the actuators used are strong enough, the
diagonal elements of the massmatrix M and the
centrifugal matrix D are prevalent, while C is ap-
proximately 0. Furthermore all matrices are con-
stant, i.e., independent of µ and its derivatives.
Thesesimpli¯cations result in ¿i = mi

Äµ+ di
_µ2 + f i ,

where i is the joint number; the joints can be in-
dependently controlled.

In a light-weight robot arm actuators are usedfor
which the above simpli¯cations no longer hold; the
motors are simply not powerful enough such that
gravit y and other physical in°uences can be ig-
nored. This meansthat, apart from having to take

PSfrag replacements
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Figure 1.1: An agonist and an antagonist rubbertuator are connected
via a chain acrossa sprocket; their relative lengths determine the joint
position µi .

the full matrices M , C, and D into account, these
and the F and G matrices are parametrisedby the
joint positions and velocities; Eq. (1.1) cannot be
simpli¯ed anymore.

Flexible links

There is little research being done on robot arms
with °exible links. Some exceptions are the re-
search groupsof A. Goldenberg (U. Toronto), J.-J.
Slotine (MIT), and M. Spong (UIUC). So far all
research in this direction is restricted to two-link
robot arms. The general approach here is to at-
tach extra acceleration sensorson the links, and
usetheir signals to correct for their °exibilit y.

Flexible join ts

A somewhat simpler control problem exists with
°exible joints. This caseis, in fact, very common,
namely when high-ratio gearboxes are used.

In the caseof elasticity at joint level, an actua-
tor can be modeled by a motor and an arm seg-
ment, connected by a spring. The properties of
the spring can only be measuredwhen there are
joint angle sensorsat both the motor (measuring
µ2) and the arm segment (measuringµ1) sideof the
spring. Equation (1.1) changesas follows:

¿l = M (µ1)Äµ1 + C(µ1)
h

_µ1
_µ1

i
+ D(µ1)

h
_µ

2
1

i

+ F (µ1; _µ1) + G(µ1); (1.5)

¿m = J ( _µ2)Äµ2 + ¿l (1.6)

where ¿m is the torque at the motor side and
¿l ´ k(µ2 ¡ µ1) the torque at the link side. J
can generally be assumedto be a diagonal matrix.

1.2.2 An exemplar di±cult join t structure

The McKibb en pneumatic arti¯cial muscle [1], as
used in the Bridgestone SoftArm robot, has typi-
cal problematic control properties [4]. The use of
two arti¯cial muscle in the construction of a joint
is depicted in ¯gure 1.1. The sprocket construc-
tion, combined with the properties of the arti¯cial
muscles, lead to a hysteretic nonlinear pressure-
position relationship.
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behaviour is recorded after ¯ve minutes of learning.

Naturally , a PID controller cannot control such a
robot. A test is shown in ¯gure 1.2. In this ¯gure,
a single joint of the robot, controlled via a PD
controller, follows a simple tra jectory.

1.3 What can we learn?

An obvious way out of the above problematics con-
sistsof learning. If wepresumethat samplesof the
desired input-output behaviour can be recorded,
and we assumewe have a black box which can
learn every function F : < m ! < n fast enough,
then any of the above robot architectures can be
optimally controlled.

Example: Figure 1.3 shows the pneumatic arti¯-
cial muscle experiment using a self-learning con-
troller based on fast learning feed-forward net-
works.

The result looks encouraging; after a relatively
short time of learning, the desiredtra jectory canbe
followed. The methodology hasbeenshown to gen-
eralizewell to other tra jectories [4]. Unfortunately,
this methodology cannot be very well generalized
to more dimensions. For the single joint system,
a 7-dimensional input spaceis used: the pressure
of one arti¯cial muscle, the tra jectory, and the
desired tra jectory. For a six-Degree-of-Freedom
robot this would result in a 42-dimensional input
vector. Knowing that the function that must be

approximated is highly nonlinear, it is clear that
this approach is not feasible. First, it is very di±-
cult to gather su±cient training data for a mapping
from < 42 ! < 6. Second,a generalapproximation
method will not be able to learn this mapping with
su±cient accuracy in waitable time [3].

1.3.1 Are impro vements possible?

The method can be improved upon in various
ways. First, there is a substantial body of liter-
ature frequently updated with methods towards
improved approximation of high-dimensional func-
tions. Someexamplesof these are [3, 5, 6, 7, 2],
but many others are currently popping up. These
approaches are more than `personal °avours of
back-propagation;' they iterate towardsan increas-
ingly good understanding of the representation
of high-dimensional surfaces from randomly dis-
tributed samples.Put together with the constantly
improving computing power, the realm of high-
dimensional surfaceswhich can be accurately and
successfullyapproximated increasessteadily.

A secondpossibleimprovement is to userecurrent
networks which are structurally capable of com-
puting internal representations of time derivatives
of the signals. For the above example, this would
reducethe input dimensionality from 42to 18. The
dimension reduction, which is otherwisecomputed
by the feed-forward network, has no longer to be
performed, resulting at least in a reduction of the
input space;possibly also of the network parame-
ter dimensionality.

Yet, in spite of these successesand possible im-
provements, the larger challenge lies at the third
possible improvement: use an adaptive structure
which specializeson the control problem at hand.
It is in this workshop that the latter point is pur-
sued.
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Chapter 2

Optimized Weight Smoothing for CMA C Neural
Net works

Dr. L.G. Kraft
Electrical and Computer Engineering

University of New Hampshire
Durham, NH 03824

GORDON.KRAFT@UNH.EDU

The CMAC neural network concepthas beenused
very successfullyin control and signal processing
applications [1, 4, 13]. It has many characteris-
tics suitable for real-time learning problemsinclud-
ing rapid training, low memory requirements and
faster cycletimes than other networks [8]. Onelim-
itation to the CMAC neural network in its present
form is that, while the approximation to the func-
tion being learned may be quite good, the partial
derivatives of the functional approximation may
not beadequatefor predictivecontrol applications.
The fundamental reasonfor this limitation comes
from the original design of CMAC. In its original
form, CMAC was not designed to develop good
partial derivative information. It wasdeveloped as
fast and e±cient associative memory based func-
tion approximator similar to an adaptive look-up
table. The problem is particularly apparent when
CMAC is used to predict system information in
areas of the state spacewhere the training data
is sparse. In the vibration control problem, for
example, the eventual degreeof vibration reduc-
tion will be limited by the resolution and func-
tional approximation properties of the CMAC net-
work. This limitation can be overcomeby adjust-
ing the weight update laws to build in the feature
of \w eight smoothing". The weight update proce-
dure can be treated as a constrained optimization
problem where a penalty is imposedon the di®er-
encebetween adjacent weights. The procedure is
similar to penalizing rapid changesin the system
input in an optimal control problem. In this paper
graphical results for the single input and the two
dimensional CMAC will be presented. The early
results show dramatic improvement of the CMAC
learning performancewhen comparedto the tradi-
tional CMAC. Not only is the learning faster, it is
much more useful in terms of constructing partial
derivative information. This is a key result that
may open the ¯eld of CMAC control to a large
classof optimization problems and predictive con-
trollers such as the adaptive critic [14].

å
f(s)

Output

Sum

Weights

Multiple Field
Detectors110 Total

Units
Logical AND unit
Logical OR unit

State Space
Detectors

Input
Sensors

s

Figure 2.1: CMAC Functional Block Diagram.

2.1 Geometrical In terpretation of
the CMA C Net work

The basic CMAC algorithm learns a function f (s)
by associating measurements of s and f (s). The
implementation algorithm is shown in Figure 2.1.

The ¯rst layers of the network determine a map-
ping of the input vector s to particular weights
in the network. Each input vector is associated
with a particular set of weights. Once a set of
weights is selected, the values of the weights are
adjusted so that the output of the network more
closelymatchesthe value of the function f (s). The
processof updating weights is very fast due to the
parallel architecture and the logic gate implemen-
tation. The middle layer of the network imple-
ments a random (but ¯xed) mapping similar to
hash coding to avoid the need for large numbers
of weights. The details of Miller's realization of
CMAC have been reported in the literature [10,
11, 12] and will not be repeated here.
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2.2 Optimal Weight Smoothing

In its simplest form the CMAC algorithm can be
thought of as set of simultaneous equations. Each
data point yi is associated with C weights in the
network. The sum of the associated weights should
match the data point.

yi = si w: (2.1)

Details of this map may be found in [10] and [11].
Each row vector, si , has exactly C (generalization
size) ones,all other elements in the row are zero.
De¯ning Y as the vector of training data, w as
the vector of network weights, and S as the selec-
tion matrix determined by the CMAC mapping,
the equationscan grouped into matrix form

Y = Sw: (2.2)

The original CMAC problem was to adjust the
weight vector w so that the equation above is sat-
is¯ed. In general there are more weights than
equationsand thus there are many setsof weights
that satisfy the equation. The original CMAC ad-
justed all the weights within the generalization re-
gion the sameamount. By doing this the eventual
weight pattern may not resemble the function be-
ing learned at all and a problem arises when the
partial derivative of the function being learned is
needed. The derivative must be calculated from
the weight vector numerically, usually by taking
the di®erenceof nearby weights. These calcula-
tions can yield estimates of the derivatives that
are not representativ e of the true derivative of the
function. The problem is illustrated in Figure 2.2
below.

To reduce this problem, a di®erent weight update
law can be used. The new weights are selectedto
minimize a scalar measurethat includes a penalty
for weights that di®er widely from their nearest
neighbors. A cost function is de¯ned as follows for

the constrained optimization problem:

J = wT Qw + (Sw ¡ Y)T R(Sw ¡ Y): (2.3)

Mathematically stated the weight vector is selected
to minimize J where R is a positive de¯nite ma-
trix, Sw ¡ Y is the equation error, and Q is the
penalty matrix associated with the di®erencesbe-
tweenweights. Taking the partial derivative of the
cost function with respect to the weights and solv-
ing for w yields,

w = (ST RS + Q)¡ 1ST RY: (2.4)

The solution represented by (2.3) is a batch mode
weight update law in that it requires all available
training data to be present. It can be applied to all
the data or just to the data within the generaliza-
tion window. The samesolution to this problem
can also be calculated recursively using one sam-
ple data point at a time. It will be optimum with
regard to whatever penalty weighting matrices are
chosen. For this work, the Q matrix takes the fol-
lowing form for a casewith 4 weights:

Q = ®

0

B
@

1 ¡ 1 0 0
¡ 1 2 ¡ 1 0
0 ¡ 1 2 ¡ 1
0 0 ¡ 1 1

1

C
A

+ ¯

0

B
@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

1

C
A ; (2.5)

with ® ¸ 0 and ¯ > 0:

The portion of the Q matrix pre-multiplied by ®
represents a penalty on the di®erencebetweenad-
jacent weights. This di®erencepenalty is used
to enforce the desired amount of smoothness in
the weights. The portion of the Q matrix pre-
multiplied by ¯ represents a penalty on the mag-
nitude of the weights. Magnitude control is al-
ways applied so that Q is non-singular. This min-
imum weight magnitude portion of the Q matrix
alsoservesto control the problem of certain CMAC
weights drifting to large valuesas the result of re-
peated, updates during learning.

Experiments were conducted in software simula-
tion to test the validit y of the new approach. A
single-input single-output learning casewas stud-
ied using both the original CMAC and the new
CMAC with weight smoothing. The problem was
to learn a function, in this casea triangle wave.
The same training data was used for each case.
There were 100 training points and two passes
through the data. Generalization was set at 4
and the learning parameter was set at 1/2 for the
original CMAC. The new CMAC used ® = 1 and
¯ = 0:1. The results are shown in Figure 2.3.

Figure 2.3 shows graphically that the new CMAC
with weight smoothing doesa better job of learn-
ing the correct derivative of the function. The
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Figure 2.3: Comparison Results for Single Input Case.

weight smoothing CMAC producesa much better
estimate of the true gradient than the traditional
CMAC. Similar results were found for several dif-
ferent typesof functions. Results for higher order
examplesare the subject of ongoing work.

2.3 Conclusions

While traditional CMAC networks have achieved
dramatic results in robot control, image process-
ing, and other applications, it has been limited
to function learning problems in which the partial
derivative information was not essential. With the
new weight smoothing concept, it may be possible
to extend the rangeof real-time applications to in-
clude a much wider classof control systemsinclud-
ing approximate dynamic programming optimiza-
tion problems, predictive control, inverse system
control and the adaptive critic.
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Chapter 3

Cereb ellar learning for context sensitiv e and critically
timed coordination of multiple action channels

Daniel Bullo ck
CNS Department
Boston University

Whether the cerebellar architecture can compete
with alternativ es control architectures in robotics
depends on two broad factors. First, is it su±-
ciently competent to serve as a robust basis for
control when used in combination with other ro-
bust control modules? Second,is it su±ciently ef-
¯cient in the way that it achievesthat competence?
Thesetwo questionsare not unrelated. In particu-
lar, asour estimate of the cerebellum's competence
increasesor decreases,so will our estimate of its
e±ciency given a ¯xed number of computational
degreesof freedom.

That the cerebellum can serve asa robust basisfor
control in combination with other control modules
is apparent from the many circuits within which it
has becomeembedded during brain evolution. In
particular, asemphasizedby Ito (1984)and Leiner,
Leiner & Dow (1986), among others, the cerebel-
lum serves not just sensory-motor pathways with
direct outputs to spinal motor centers, but also
servescontrol pathways with outputs to motor and
premotor cortex.

Such `spread of embedding' tells us that the ba-
sic cerebellar module performs very broadly use-
ful functions, but it does not specify what those
functions are. Most past theories have empha-
sized that the cerebellum is capable of learn-
ing non-linear sensory-motor transforms, through
sparseexpansive recoding performedby the mossy-
granule fanout and Golgi feedback, combined with
adaptation of synaptic e±cacies between granule
cell axons (parallel ¯b ers) and the giant Purkinje
cells. In particular, these are the properties ab-
stracted in the CMAC family of models pioneered
by Albus (1975).

Over the years there has also been much discus-
sion of the possibility that the cerebellum is pro-
viding a timing function. To cite two early exam-
ples, Braitenberg (1961) proposedthat the paral-
lel ¯b ers might be functioning as delay lines, and
Fujita (1987) proposed that natural variations in
Golgi-granule interactions might produce a basis
for adaptive lead-lag compensation.

Generally speaking, such proposalsare consistent
with the expansive recoding idea made explicit in
CMAC models. In essence,such proposals argue
that expansive recoding occurs in both spaceand
time to provide a plant-independent basisfor max-
imizing the usefulnessof input information for pur-
posesof control. In this sense,the cerebellum can
be seen to be as much a `perceptual' as a mo-
tor organ, although restricted to serve the kind
of non-image-based,direct, perception (`informa-
tion pickup') emphasizedby Gibson (1966). For
robotics, the cerebellum canbeseenasasexistence
proof for the usefulnessof look-up type perceptual-
motor transforms that can be very fast because
they avoid the processingoverheadassociated with
complex image processing.

Here it should be noted that cerebellar lesionsare
associated clinically with striking lossof movement
coordination and, in more re¯ned analyses,with
loss of precise timing control over motor control
actions. Such lossof normal timing is apparent not
just in behavior but alsoin the activities of neurons
in frontal cortex (Hore & Flament, 1988). Timing
and coordination are intimately related in virtu-
ally all animal movement becausemusclescomein
opponent pairs or more complexsets. Even for sin-
gle joint systems,coordinating an opponent muscle
pair during rapid, accurate, self-terminated move-
ment requires precise timing. But these require-
ments are greatly ampli¯ed by multi-join t move-
ment, becauseof the complex mechanical interac-
tions that arise among linked segments.

In many models, motor planning variables and
their derivatives have been assumedto be among
the inputs to the cerebellum, and to account for
much of the cerebellum's apparent timing compe-
tence. This makessensebecauseof the inherently
predictive nature of time derivatives. However, re-
cent experimental data suggest that postulating
such inputs cannot fully explain the adaptive tim-
ing competence of the cerebellum. In particular,
such signalsdon't exist in certain paradigms used
to demonstratecerebellar adaptive timing, such as
the conditioned eye-blink paradigm. Indeed, ex-
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perimental evidencefrom this paradigm (reviewed
in Bullock, Grossberg & Fiala, 1994;Fiala, Gross-
berg, and Bullock, 1996) has strongly implicated
the cerebellar cortex as site of an adaptive tim-
ing function that can learn arbitrary delays in the
range of 100 ms to 4 s. In this presentation, I
will brie°y summarize these data and then con-
trast two di®erent hypothesesdeveloped in Bul-
lock et al. (1994), Fiala et al. (1996), and Bullock
& Fiala (1996) regarding the mechanisms of this
adaptive timing function.

The second hypothesis is of special interest be-
cause it postulates that there is an intracellu-
lar process|mediated by a metabolic cascade
initiated when parallel ¯b er activation excites
metabotropic glutamate receptorson Purkinje cell
dendritic spines|whose temporal properties are
matched to the macroscopictiming requirements
of the control task. Adopting this hypothesisleads
to the following summary description of cerebellar
function.

Summary of Hyp otheses & Conclusions

The cerebellum is composedof a large number of
parasaggitally oriented cortico-nuclear microzones
that are de¯ned by shared climbing ¯b er projec-
tions and convergenceof Purkinje cell axons on
subsetsof nuclear cells.

Cerebellar granule cells can detect event combina-
tions.

The cerebellum may generatea mGluR mediated
spectrum of time-delayed Ca++ pulses for each
combination detected in the recent past.

Coincidence of a mGluR-mediated Ca++ pulse
with a climbing ¯b er burst forgesa causallink be-
tweenthe delayed pulse and a control action.

Climbing ¯b er burst rate re°ects error-
compensating action (broadly interpreted) in
the control channel for which the microzoneserves
as a side-loop, as emphasized in feedback-error-
driven models of cerebellar learning (Grossberg &
Kuperstein, 1986; Ito, 1984;Kawato, et al. 1987).

The dynamics of the Ca++ pulse generation en-
able the control action to move forward in time.
This allows it to counteract, and in many cases
cancel, the e®ectof the perturbation, i.e., the er-
ror that initially elicited reactive control action.

The cerebellum searchesin parallel through masses
of recent signal tra±c for leading indicators that
will allow the animal to take actions that can pre-
empt errors.

The cerebellum allows a switch from reactive to
proactive control.

A common role of the cerebellum is therefore to
establish a feedforward processthat progressively

o®-loadsfeedback control.

The relative sizeof the cerebellum is larger in an-
imals that use active sensing. This points to the
needfor further research on the cerebellum aspart
of perceptual systems,a point recently emphasized
by Bower (1997).

The common image of how the time scaleof neu-
ronal action relates to the time scaleof behavior|
that it's a small fraction|is based on iontropic
neuronal responses,and has been proven incom-
plete by data on metabotropic responses,including
mGluR cascades.

BecausemGluR cascadeshave now been impli-
cated in neural plasticit y in many brain regions|
including the striatum, hippocampus, and vi-
sual cortex|coincidence detection across tempo-
ral gaps may be a generally useful augmentation
of associative learning.

By cerebellar learning, a single event detector can
control a sequenceof control actions, either by a
single e®ectoror by a set of e®ectors.

The cerebellar cortex can be seen as adaptively
compiling, and mediating execution of, vectors of
context-dependent control actions that can be ar-
bitrarily staggeredthrough time in the 100 ms to
4 secondrange.

Ac kno wledgmen t
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Chapter 4

Adaptiv e Cereb ellar Con trol of Opp onent Muscles

Jos¶e L. Con treras-Vidal
Motor Control Laboratory
Arizona State University

Tempe, AZ 85287-0404USA

Juan Lop ez-Coronado
Center for Neurotecnology

University of Valladolid
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Abstract

A neural network model of opponent cerebellar learn-
ing for movement control is proposed(Contreras-Vidal,
Grossberg & Bullo ck, Learning and Memory (1997)
3:475-502). The model shows how a central pattern
generator in cortex and basal ganglia, a neuromuscu-
lar force controller in spinal cord, and an adaptiv e cere-
bellum cooperate to reduce sourcesof motor variabil-
it y during multi-join t movements using mono and bi-
articular muscles. An application towards the indepen-
dent position and force control of a dextrous, compliant
arti¯cial hand with a suite of sensorsis discussed.

4.1 In tro duction

Currently , arti¯cial handsare typically binary and
have few rudimentary sensors; very simple me-
chanical actions which limit the types of func-
tional graspsavailable, few degreesof freedom,and
rudimentary force and position control. Further-
more, they are commonly too bulky, too heavy,
too slow, or too complex for use; require repro-
gramming or changing the terminal device for dif-
ferent tasks/environments, and are not capableof
adapting to changesin operating conditions. This
is true of prosthetic hands, telethesis devices, or
industrial grippers. Therefore, one of the goals of
current research on bio-robotics is the development
of neurally-controlled arti¯cial handsthat are easy
to use,safeand not costly to fabricate, maintain or
reprogram and that can be used in a large range
of settings (e.g., home, school or work). In this
paper we present a neural network model of adap-
tiv e cortico-spino-cerebellar dynamics for compli-
ant hand movement control.

4.2 Adaptiv e sensory-motor control

In the systemof Fig. 4.1, an opponently-organized
central pattern generator (VITE model of Bul-
lock and Grossberg, 1988) is used to compute the
desired movement tra jectories by smoothly inter-
polating between initial and ¯nal muscle length
commands for the antagonist musclesinvolved in
the movement. The rate of interpolation (i.e.,
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the movement velocity) is controlled by the prod-
uct of a di®erencevector which continuously com-
putes the di®erencebetween the desired (T1,T2)
and present position (A1,A2) of the limb, and
a volitional movement gating signal (GO) (see
Contreras-Vidal and Stelmach, 1995).

However, to specify the desired¯nger-tip direction
in 3D space,we must usea direction mapping from
spatial to motor coordinates. This direction-to-
rotation transform (DIRECT model) maps each
spatial direction into an appropriate change in
joint anglesthat causesthe ¯nger to move in the
commandedspatial direction (Bullo ck et al., 1993).
As directional vectors, rather than target posi-
tions, arecommanded,tools canbeattached to the
end-e®ectorwithout problems. The visuo-motor
map is initially learned during a training period,
although it can be updated at any time afterwards
(Bullo ck et al., 1993).

4.2.1 Spinal force controller

Bullock and Contreras-Vidal (1993) have shown
that the spinal circuitry (seeFig. 4.1) has evolved
to provide independent control of muscle length
and joint sti®ness. In this design, joint sti®ness
involves simultaneous increments to the contrac-
tile states of the joint's opposing muscles,result-
ing in muscleco-contraction (Humphrey and Reed,
1983). This is accomplished by adding a non-
speci¯c co-contraction signal P that adds to both
components of the signal pattern (A1,A2), produc-
ing the net input (A1 + P,A2 + P) to the opponent
®-MN pools. The signal P is capableof producing
high levels of co-contraction of the opponent mus-
cles. The FLETE model achievesposition-code in-
variance,

µ(A1; A2) = µ(A1 + P; A2 + P): (4.1)

Figure 4.2A depicts the steady-statecharacteristics
of the FLETE model controlling a singlejoint via a
pair of antagonist muscles.In this graph, there are
20 separatetraces plotted corresponding to 20 dif-
ferent sti®nesssettings, satisfying Eq. (4.1). Fig-
ure 4.2B shows the steady-state responseof a pla-
nar two-joint systemwith bi-articular musclescon-
trolled by two VITE-FLETE systems. Joint a®er-
ent feedback from the proximal to the distal seg-
ment was used to stabilize the distal segment, so
that the distal segment could remain constant for
a given choice of descendingcommands(A1 ¡ A2)
over the full range of proximal angles(Contreras-
Vidal et al., 1997).

4.2.2 Adaptiv e cereb ellar control of
opp onent muscles

Recently , Smith (1996) have proposed that pairs
of Purkinje cells, as in Fig. 4.1, could use recipro-
cal inhibition or antagonist cocontraction to con-
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trol antagonist muscle groups. Supposethe spin-
dle a®erents or descendingcentral commandsfrom
both opponent channelsare active and excite non-
speci¯cally the basket cells (bi in Fig. 4.1). The
activation of the basket cells will result in inhi-
bition of both agonist and antagonist Purkinje
cells (Pi ), therefore disinhibiting the cerebellar nu-
clear cells (n i ) and causing co-contraction of the
opponent pair of muscles. On the other hand,
suppose that during learning, long-term depres-
sion (LTD) of parallel ¯b er-Purkinje cell (PF-P)
synapsesthrough crosscorrelationof parallel ¯b er
and climbing ¯b er discharges in the same oppo-
nent channel (Z11 and Z22, but not in opposing or
unrelated channels (Z12 and Z21), has causedthe
pattern of projections of Fig. 4.1 to emerge.Then
di®erential agonist channelstretch will activate the
Purkinje cell from the antagonist channel therefore
inhibiting the antagonist nuclear cell (Contreras-
Vidal et al., 1997).

Figure 4.3 shows a schematic representation of the
cerebellar learning processjust described. Panel A
lists two possibleshoulder joint movements. Dur-
ing °exion, pectoralis (PEC) is the agonist mus-
cle. In extension, the posterior deltoid (PDEL) is
the agonist. Panel B summarizesthe initial con-
nectivit y (unitary) matrix of the PF-P synapses.
The rows correspond to granule cells and their as-
sociated parallel ¯b ers. The columns correspond
to distinct muscle channels with their associated
Purkinje cells and climbing ¯b ers. Each granule
cell sendsa parallel ¯b er to a Purkinje cell in both
channels. Each climbing ¯b er (C1 or C2) inner-
vates only one Purkinje cell. Panel C usesan en-
closing box to indicate CF or PF activit y. Con-
junctiv e occurrenceof parallel ¯b er and climbing
¯b er discharge is shown by shading. This con-
junction will produce a decreaseof the synaptic
strength of the PF-to-Purkinje connection (Ito,
1991). After enoughLTD trials, the synaptic ma-
trix would look as in Panel D. Only the parallel
¯b er-Purkinje connections in unshaded cells sur-
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vive the long-term depression.

In the model of Fig. 4.1, the cerebellar nuclear cells
excites ®-motorneurons and inhibits their associ-
ated Renshaw cellsvia the rubrospinal tract (Hen-
atsch et al., 1986). However, Purkinje cell inhibi-
tion of the nuclearcellswill prevent excitation of ®-
MNs by this pathway unlessparallel ¯b er signals,
after learning in particular contexts, will produce
a transient inhibition of Purkinje cells, which will
disinhibit the nuclearcellswhenever thosecontexts
recur.

Figure 4.4 shows a state-spacerepresentation of
the tracking capabilities for an intact and a de-
cerebellate system (cf. Fig. 4.1). It illustrates how
the composite system moves the limb to the con-
¯guration speci¯ed by the target position vector
input to the VITE modules, in terms of the er-
ror betweenthe actual and the intermediate or de-
sired tra jectory values for joint anglesand veloci-
ties generatedby VITE. Note that the intact sys-
tem follows the desired joint positions and veloci-
ties better than the decerebellate system. Absolute
deviations from zero error are smaller and the er-
ror curves are more evenly distributed above and
below zero on both the position and velocity di-
mensions. In summary, the cerebellar projections
to spinal centers improve the tracking dynamics of
the two-joint system.

4.3 Application to bio-rob otics

In order to transfer the biological principles of
movement control to robotics, we are investigating
how the model might be incorporated as a stan-
dard part of the robotic control. Therefore, an
arti¯cial hand with two ¯ngers and one thumb is
being developed to demonstrate the neural algo-
rithms taking into account all the physical laws
which otherwise may be neglected or simpli¯ed
in a mathematical model (Chou and Hannaford,
1997). Each multi-join ted ¯nger protot ype has 3
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Figure 4.4: State{space representation of the shoulder and elbow po-
sition and velocity tracking for both intact and decerebellate two-joint
model simulations. Three variables are shown: The plots show curves
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DoF's (for the metacarpophalangeal(MCP), prox-
imal interphalangeal (PIP), and distal interpha-
langeal(DIP) joints, respectively). The hand is at-
tached to the wrist. The anglesof rotation about
the wrist are limited to °exion (or volar °exion)
and extension(or dorsi°exion). Also, hand supina-
tion and pronation orients the ¯nger opposition
spaceduring hand preshaping. The hand geom-
etry is similar to that of the Stanford/JPL hand
(Mason and Salisbury, 1985). Both the PIP and
the DIP joints have °exion and extension,and the
MCP joint has abduction/adduction, thereby al-
lowing changesin the ¯nger bendingdirection, thus
permitting the hand to perform a variety of pre-
hensile tasks, such as cylindrical grasp for heavy,
convex workpieces, power grasp with ¯ngers and
thumb curled about the object such as a hammer,
modi¯ed hook grasp with thumb along tool, three
¯ngertip grasp for light circular or cylindrical ob-
jects, three ¯nger precision or trip od grip, two ¯n-
ger precision or palmar grip and lateral pinch grip
(Cutk osky and Wright, 1986).

Muscle-like actuators attach to steel tendon wires
which wrap around a pulley embeddedwith an en-
coder at each joint using a novel mechanical design
for routing the tendons along the ¯nger, ensuring
a linear displacement-join t angle relationship. Op-
ponent, muscle-like actuators are critical compo-
nents of the robotic gripper as they need to be
used if one is to achieve the position-code invari-
ancerelationship using the model describedherein.

4.4 Discussion

In principle, the use of sensorscan allow an ar-
ti¯cial hand to examine, feel and detect changes
and variations in the workpiece and adapt its op-
eration to them. This requires, however, the sen-
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sor output signals to be integrated directly in the
neural (spinal) force controller (Contreras-Vidal,
1994; Contreras-Vidal et al., 1997). Although
predictive (cerebellar) feedforward sensorycontrol
mechanismssupport graspstabilit y evenbeforeob-
ject contact, sensory feedback generated by dis-
crete mechanical events (e.g., initial object contact
and release) is essential for monitoring and suc-
cessful completion of the series of events related
to the di®erent grasping and manipulation phases
(Johanssonand Cole, 1994). Indeed, Edin et al.
(1992) have shown that the grip/load force ratios
employed at each ¯nger engagedin a lifting task
are controlled independently and are basedon cur-
rent sensory tactile information and anticipatory
parameter control.

Hand compliance is also important to compen-
sate for positioning errors and to improve stabil-
it y when contacting rigid or fragile environments.
Compliancecontrol is already beingusedin robotic
gripper applications, but these systems provide
limited control capacity at present (e.g., Remote
Center Compliance). The present model of cortico-
spino-cerebellar dynamics provide a novel mech-
anism for overcoming these limitations, and sug-
geststhat the cerebellum is involved in the learning
and coordination of opponent musclesynergies.
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5.1 Feedback-error-learning mo del
of the cerebellum and its
physiological examination

In this part, I will discussthe following three ques-
tions regarding the internal models of a motor ap-
paratus and the external world in visual-motor
transformations such as visually guided reaching
movements. (1) Why are internal modelsnecessary
for visual-motor transformation? (2) Where could
internal models be located in the brain? (3) How
can internal models be acquired in the brain?

(1) At least three computational problems must
be solved for visually-guided arm reaching move-
ments: coordinate transformation, tra jectory for-
mation and motor command generation. All three
of theseproblemsrequire forward/in versekinemat-
ics and dynamics models of the arm. Especially,
for the control problem, the low sti®nessof the
arm which is observed during multi-join t move-
ments suggeststhe existenceof an inversedynam-
ics model of the arm (Gomi and Kawato, 1996).

(2) Internal models could possibly be located in
many places in the brain. However, the cerebel-
lar cortex is one of the few placesexperimentally
supported. An inversedynamics analysis of cere-
bellar Purkinje cell ¯ring patterns in the ventral
para°oculus (VPFL) suggeststhat the VPFL con-
stitutes an inversedynamicsmodel of the eye plant
for the ocular following responses(OFR) (Shidara
et al., 1993)

(3) Acquiring inversemodels through motor learn-
ing is computationally di±cult. We proposed a
cerebellar feedback-error-learning model to resolve
this di±cult y (Kawato and Gomi, 1992). This
scheme was recently experimentally supported by
a generalizedlinear model analysisof the complex
spike ¯ring probabilit y in the VPFL during OFR
(Kobayashi et al., 1995,1997;Kawato et al., 1997).
Figure 5.1 summarizesthe current schema of the
neural circuit controlling the OFR in monkey, and
it provides a direct support to the feedback-error-
learning model of the cerebellum. The cerebel-
lar VPFL is the essential site for this visuo-motor

transformation.

5.2 Rob otics applications

The feedback-error-learning model has been ap-
plied to several di®erent controlled objects ranging
from a conventional industrial robotic manipula-
tor, PUMA (Miy amoto et al., 1988), an automatic
braking system of an automobile (Ohno et al.,
1994),Bridgestone'srubbertuator (pneumatic rub-
ber arti¯cial muscles)SoftArm robots (Katayama
and Kawato, 1991). More high-level, task learn-
ing applications are teaching by demonstration in
Sarcosdextrous arm (Miy amoto et al., 1996)using
the model of the phylogenetically newer part of the
cerebellum, which is illustrated in the next section.

5.3 Em bedding of multiple in ternal
mo dels in the lateral
cerebellum

We hypothesize that the computational mecha-
nism is common for di®erent parts of the cerebel-
lum. In the lateral hemisphere, which is exten-
sively developed in man, internal modelsof the ex-
ternal world, such as tools, other people's brains,
and other parts of the brain, are assumedto be
acquired through learning. Imamizu et al. (1997)
have obtained fMRI data supporting this view.

The ventrolateral part of the dentate nucleus and
its corresponding part of the cerebellar lateral
hemisphereare almost unique to man. I propose
that this phylogenetically newest part of the cere-
bellum provides many di®erent internal models of
the external world as well as other parts of one's
own brain which are essential for cognitive func-
tions such asmental imagery, non-verbal communi-
cation, language,thoughts and self-consciousness.
Especially, I emphasizemimesis of Merlin Donald
(1991): motor skill to usethe whole body asa rep-
resentational device as the central part of human
intelligence which is enabled by bi-directional in-
teractions betweentheseinternal models.
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Figure 5.1: Neural circuit of OFR.

Figure 5.2: Ogawa's triangle.

The di®erencebetween human and chimpanzee's
intelligenceis often characterizedin their abilit y of
hierarchical embedding in tool usage,motor plan
and language. The newest part of the cerebellum
is characterized by a unique anatomical structure
called Ogawa's triangle (see Figure 5.2): closed
loop formed by the dentate nucleus, parvocellular
part of the red nucleus, and the inferior olive. I
propose that this closed loop makes one internal
model could be trained based on an error signal
which is generatedby another internal model, and
thus makeslearning of the hierarchical embedding
structure possible (Figure 5.3). This hypothesis
is basedon the following data and computational
reasoning.

Recently , °ood of data suggest cognitive func-
tions of the human cerebellum. PET, fMRI, pa-
tients, anatomy: the broad range demonstrated is

Ogawa's triangle: hardware for embedding,
recurrence, and hierarchy?
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Figure 5.3: Embedding model of cerebellar modules

quite impressive: motor imagery, noun-verb asso-
ciation, insane task, visual shape discrimination,
mental rotation, sensorydiscrimination, attention,
tower of Hanoi, motion perception, autism, work-
ing memory, and general IQ!

The cerebellum expands(2.8) just asthe cerebrum
(3.2) comparedwith an averageof non-human pri-
mateswith the samebody weight. Especially, den-
tate nucleus, and furthermore, its ventro-lateral
part was enormously expanded. Taken this with
the fact that the cerebellum is 10%,50%and more
than 100%of the cerebrum in weight, surfacearea
and the cell number, respectively, it is not sur-
prising if human intelligence is mainly due to the
newest part of the cerebellum, or at least its close
connectionwith the cerebralfrontal cortex by enor-
mousnumber of cerebro-pontine ¯b er (20 million).

Human brain started to take the present form
some 3 million years ago. On the other hand,
language is supposed to be much more recent
event (probably between50 to 300thousandsyears
ago). Meanwhile, human intelligence which en-
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abled making stone tools, domestication of ¯re,
immigration acrosscontinents, was characterized
as mimesis by Merlin Donald. This motor skill
includes or is very much related to phenomena
like imitation, perception of biological motion, mo-
tor theory of movement-pattern perception, mir-
ror neurons, mental motor imagery. From com-
putational viewpoint, most of the elements could
be implemented by bi-directional information pro-
cessingusing both forward and inversemodels of
the external world including other's brain.

From computational reasoning, our group postu-
lated to usethe sameoptimal principle and neural
network hardware which are used for motor plan-
ning and execution for perception of communica-
tion signals (Kawato, 1996). Recent physiologi-
cal and brain imaging studies support this general
idea: mirror neuronsand motor regionsare lit up
during movement perception.

In summary, the hypothesis is based on the fol-
lowing factors: (1) Neural circuit is uniform over
the cerebellum, thus someessential computational
principle should be preserved. (2) Internal mod-
elsand error-driven learning are the computational
principles of the phylogenetically older part of the
cerebellum. (3) Brain imaging study also sup-
ports the internal model hypothesisand the error-
driven learning for the phylogenetically newer part
of the human cerebellum (cf. Raichle et al., 1994;
Imamizu et al., 1997). (4) Because the inputs
and outputs of the newest part of the cerebellum
are not connected directly with motor apparatus
or sensoryorgans, internal models acquired there
should not be simple inverseor forward models of
the motor apparatus or sensory organs. (5) Be-
causethe newest part of the cerebellum are almost
unique to human brain, it should have functions
unique to human intelligence, especially mimesis.
Thus, internal models are modeling other parts of
one's own brain, other person's brain, other per-
son's body, the external world other than motor
apparatus or sensoryorgans, for example tools.
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Abstract

A computational model that uses crude corrective
movements to learn accurate reaching programs is pre-
sented. The model learns a feed-forward motor pro-
gram in the form of pulse-step commands which driv e
a dynamic, 2 DOF, planar arm. The arm is actuated by
two pairs of opposing muscles, which driv e the shoul-
der and elbow joints. The model is able to learn motor
programs that accurately bring the arm to the target,
while producing in many casesbell-shaped tangential
velocity pro¯les.

6.1 In tro duction

Young infants reaching to touch or grasp an ob-
ject make movements that di®ergreatly from adult
grasping movements. Instead of tangential veloc-
it y pro¯les that are dominated by a single peak
and are approximately bell-shaped, infant pro¯les
consist of a sequenceof peaks, which de¯ne seg-
ments of movement that are referred to as \move-
ment units" [von Hofsten, 1979]. As the infant de-
velops, the number of movement units required to
reach a target is reduced, until adult-lik e velocity
pro¯les are ultimately achieved. Berthier (1994)
suggestedthat some of the individual peaks re-
sult from the discrete triggering of a movement-
generating mechanism, and that the individual
movement units are attempts at correcting errors
in the previous movement. Berthier, Singh, Barto
and Houk (1993) hypothesizedin a model of cere-
bellar learning that similar corrective movements,
though crude, may serve as a source of training
information for an adaptive processthat tunes a
motor program.

In this paper, we focus on the issueof using crude
corrective movements to learn accuratemotor pro-

grams for controlling a simulated dynamic arm.
The arm is actuated by two pairs of opposingmus-
cles, which drive the shoulder and elbow joints.
For the purposesof the experiment described in
this paper, the learning controller represents a sim-
plistic motor program for moving the arm from a
single initial position to a single target, and takes
the form of pulse-step motor commands that are
sent to the muscles.The pulse-stepcommandsare
tuned as a function of the corrective movements
that follow the learned movement. Despite the
crude nature of the corrective information, and the
simple representation of the motor program, the
systemlearns to generateaccurate reaching move-
ments that exhibit, in somecases,straight paths
and bell-shaped velocity pro¯les.

6.2 A Simple Con trol System

The control system consistsof two separatemod-
uleswhich generatemotor signalsin the form of ac-
tivation levels for each of the four muscles(Figure
6.1). The learning controller storesa feed-forward
motor program that attempts (with learning) to
bring the arm to the target. The hard-wired cor-
rector module is responsible for generating crude
corrective movements when the learning controller
does not produce accurate reaches. The output
control signals of these two modules are summed,
and then passedthrough a cascadeof three ¯rst-
order, low-pass¯lters before arriving at the mus-
cles.

The musclesare modeled as visco-elastic (spring)
elements. A single muscle control signal sets the
threshold for the muscle's length-tension curve.
We assume a linear dependence of tension on
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Figure 6.1: The Control Architecture. Both the crude corrector and
learning modules produce muscle activation signals. These two sets of
signals are summed, the result of which is passedthrough a temporal
¯lter, before a®ecting the state of the muscles. The learning module
produces pulse-step activation patterns that are intended to bring the
arm from a given state to a target. The corrector module generates
pulsesof activation when the arm comesto rest at a point far from the
target.

length [Houk and Rymer, 1981]. The dependence
of tension on velocity is described by the Hill
equation for shortening [Winters and Stark, 1987],
and is dominated by the stretch re°ex dur-
ing lengthening. The non-linear damping pro-
vided by the stretch re°ex is approximated
by ¡ _l1=5, where _l is the velocity of muscle
stretch [Gielen and Houk, 1984]. The passive
forcesaremodeledasexponentials, the magnitudes
of which are only signi¯cant near the joint limit,
as in Winters and Stark (1985).

For an agonist/antagonist pair of muscles, the
control signals specify a unique equilibrium point
for the joint. However, due to the high, non-
linear damping forces generated by the stretch
re°ex, there exists a region around the equi-
librium in which the joint velocity is rapidly
forced towards zero, e®ectively causing the joint
to \stic k". A more detailed treatment of related
muscle models may be found in [Wu et al., 1990,
Fagg et al., 1997, Barto et al., 1998]. For simplic-
it y, the muscle moment arms are assumedto be
constant over the range of movement.

The learning controller represents a motor program
in the form of a muscle activation pattern (the
pulse), which is followed at a speci¯ed time by a
secondpattern of activation (the step)1. The de-
tails of thesepulse-stepprograms are collapsedin
the learning controller into a set of two parameters
for each joint: the heights of the pulseand step(the
activation pattern for each °exor/extensor muscle
pair is speci¯ed by a single parameter). For sim-
plicit y, we focus here on the case of learning to

1Pulse-stepcontrol of rapid eyemovements hasbeen
well established [Robinson, 1975]; this form of control
appears to be a reasonableabstraction in the context
of arm movements [Ghez and Martin, 1982].

reach from a single initial point to a single target.
Therefore, only four parameters are represented
by the learning controller. The time of transition
from the pulse to step is linearly scaledwith the
maximum of the shoulderand elbow pulseheights.
When appropriately tuned, the pulse phaseserves
to initiate the movement of the arm towards the
target. The step phase sets the threshold of the
stretch re°ex that is responsible for slowing the
arm, and thereafter maintaining the arm at the
target [Ghez and Martin, 1982].

In addition to the learning controller, our model
assumesthe existenceof a pre-wired correctivecon-
trol module that is capableof making crude move-
ments in the approximate direction of the target.
This module producesa corrective movement only
in casesin which the arm stops moving before the
target is reached. The movement is generatedus-
ing ¯xed-duration, constant-magnitude bursts of
muscle activit y. For a given correction, the burst
magnitudesfor the shoulderand elbow agonistsare
chosenaccordingto three heuristics: 1) Inspired by
the observations madeby Karst and Hasan(1991),
the relative activation level of the shoulder and el-
bow musclesis derived from the target's position
in a visual coordinate systemthat is rooted at the
wrist, and whose orientation is that of the fore-
arm (Figure 6.2). Target locations along the axis
of the forearm are translated into pure shoulder
movements, whereasthose located along the per-
pendicular axis result in pure elbow movements.
O®-axis targets recruit a mixture of shoulder and
elbow muscles; 2) The magnitude of the muscle
bursting pattern is scaledwith distance to the tar-
get; and 3) If the arm has not moved signi¯cantly
sincethe last correction, then the magnitude of the
musclebursting pattern is increasedby a constant
factor.

In many (but not all) instances, the movements
generated by this set of heuristics bring the arm
closer to the target. However, the target is rarely
reached on the ¯rst correction. Instead, a sequence
of corrections is typically required to complete a
given reach.

6.3 The Learning Algorithm

The protocol for training is as follows: At the be-
ginning of a trial, the arm is placed in a start-
ing con¯guration, and a target location is speci-
¯ed. The reaching movement is then triggered {
the learning controller executesits pulse-stepmo-
tor program. If the arm stopsmoving at a position
not near the target, then the corrector module pro-
ducesa brief pulse of activation. If the arm again
stops far from the target, then the correction pro-
cessis repeated until the wrist is within 1 cm of
the target.
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Figure 6.2: Heuristic method for choosing the relative magnitudes of
the elbow and shoulder °exor/extensor muscle bursts. Targets located
in the half-plane denoted by + e recruit elbow °exors; the ¡ e half-
plane recruits elbow extensors; + s: shoulder °exors, and ¡ s: shoulder
extensors.

Not only do the pulsesgeneratedby the corrector
module take the arm closerto the target, but they
also provide information about how the learning
module's pulse-stepmotor program should be up-
dated. If the step levels are miscalibrated, then
even if the pulse is able to bring the arm near
the target, the arm will subsequently drift away.
When the arm stopsmoving, this will result in the
production of a corrective movement, whosedirec-
tion will indicate how the learning controller's step
command should be updated.

In contrast, if the pulse command is drastically
miscalibrated (but the step is correct), the posi-
tion of the arm shortly after the execution of the
learning controller's pulse-stepprogram will be far
from the target, resulting in a sequenceof correc-
tions. In this case, the training information de-
rived from the corrections is used to update the
pulsecommand of the learning controller.

The full learning procedure,in which the pulseand
step are learned in parallel, is summarized below.
L p and L s are vectors representing the pulse and
step commandsof the learning controller, respec-
tiv ely; C(X ; T) represents the corrector motor sig-
nal, which is a function of the arm (X ) and target
(T) positions.

FOR eachtrial
Set the target and initial arm positions:
T and X (0), respectively
Executethe pulsecommand: L p ;
Wait for pulseduration
Executethe step command: L s ;
Wait for arm to stop
UNTIL arm is at the target

Executethe corrective pulse: L s + C(X ; T )
IF the arm has beennear the target
during this trial

L s Ã L s + ®C(X ; T )
ELSE

L s Ã L s + ®̂C(X ; T )

L p Ã L p + ¯ (i )C(X ; T )
Wait for arm to stop

®, ®̂, and ¯ (i ) are step-sizeparameters in which
®̂ ¿ ®, and ¯ (i ) decays exponentially with the
number of corrections, i , madesincethe beginning
of the trial.

In the above algorithm, the corrective pulse is
taken to be the sum of the learning controller's
step (L s), and the pulse generatedby the correc-
tor module (C(X ; T)). Without the learning con-
troller's step, it would be necessaryfor the correc-
tor module to also take into account the absolute
position of the target in order to produce move-
ments in the correct direction, thus adding to the
\in telligence" that would have to be hard-wired
into this module.

6.4 A Learning Exp erimen t

The behavior of the systemwhile learning to move
from a single initial position to a single target is
illustrated in Figure 6.3. After 10 learning trials
(Figure 6.3A), the pulse signals for the shoulder
and elbow °exors that are generatedby the learn-
ing controller are not large enough to bring the
arm to the target. This results in a sequenceof
six corrective movements that make smaller and
smaller \hops" towards the target. The correc-
tor module recruits the shoulder °exor for all six
corrections (indicated by six additional peaks in
the °exor motor command). For the elbow, how-
ever, the ¯rst two corrections recruit the °exor,
but the remaining corrections involve the exten-
sor. We also see°exor activit y during these latter
corrections; this is due to the fact that the learning
controller's stepphaserecruits the elbow °exor (re-
call that the learning controller's step is combined
with the corrector's pulse in order to generate a
corrective movement).

After 34 trials of learning (Figure 6.3B), the wrist
makes a relatively straight-line movement to the
target, and the velocity pro¯le is approximately
bell-shaped. Furthermore, the learned movement
does not require the invocation of the corrector
module.

Figure 6.4 demonstratesthe paths learned by the
system for 3 initial positions and 47 target posi-
tions2. For each initial position/target pair, the
pulse-step commands of the learning controller
were ¯rst cleared; learning trials were then pre-
sented to the systemuntil the movement wascom-

2The one path not shown (center starting position
of Figure 6.4B, movement to the right and down) was
not learnable by the system due to limitations in the
algorithm in dealing with the high passive forces near
the joint limit.
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Figure 6.3: Systembehavior at trial 11 (A) and trial 35 (B) during learn-
ing for a single initial position/ta rget pair. The small dots indicate the
path taken by the wrist; larger dots show points at which the corrective
movements were generated. The temporal plot shows the tangential
velocity of the wrist (cm/sec), and the ¯ltered motor commands for
the shoulder °exor (extending upward), extensor (downward), and the
elbow °exor (up) and extensor (down).

pleted with no corrections. For these movements,
an averageof 33 trials wererequired for each train-
ing pair (the range was 16{98 trials). The hooks
that occurred at the endof many of the movements
resulted from one joint completing its motion be-
fore the other. This happened typically when the
magnitudesof movement in joint spacedi®eredsig-
ni¯can tly between the two joints. Also, in these
cases,the tangential velocity pro¯le showed a high
velocity peak, followed by either a second(lower)
velocity peak or a °at region.

6.5 Discussion

This paper has attempted to demonstrate that a
crude error correction devicemay be usedto drive
the adaptation of a high-quality motor program.
Our model is able to learn feed-forward motor pro-
grams for reaching that accurately bring the arm
to the target, while producing in somecasestan-
gential velocity pro¯les that are single-peaked and
bell-shaped. The tra jectories generated by our
model that do not re°ect these adult-lik e proper-
ties end with hooked paths, which are the result
of one joint completing the movement before the
other.

Hollerbach and Atkeson (1987) have suggested

A

B

Figure 6.4: Learning movementsfor a set of center-out movement tasks
of length 10 (A) and 20 (B) cm. Each path is the result of separate
learning runs, each consisting of an averageof 33 learning trials.

that by staggering the onset of movement of
one joint relative to the other, curved move-
ments may be made to appear straighter. Sev-
eral authors have reported experiments which
suggest that such a strategy may be uti-
lized by humans [Kaminski and Gentile, 1986,
Karst and Hasan, 1991b]. Karniel and In-
bar (1997) have proposeda model similar to ours
that makes use of pulse-step control to drive a 2
degree-of-freedomarm. In their model, the mo-
tor programs are described not only by the height
of the pulse and step for each joint, but also by
the relative timing of the joint pulses. By using
theseadditional degreesof freedom, they are able
to learn movements that do not re°ect the hooks
that are seenin our model. Their learning proce-
dure, however, relies on a systematic variation of
the control parameters to estimate an error gradi-
ent, which is then usedto further reducemovement
errors.

Our approach is also related to Kawato's feed-
back error learning, in that training is driven by
movement producedby a controller external to the
learning system [Kawato and Gomi, 1992]. How-
ever, our model di®ers from this work in two key
ways. First, feedback in our model is not pro-
vided continuously, rather it is available sporadi-
cally. Second,our model does not require the use
of a high-quality referencetra jectory from which
the corrective movements are computed.

Although what is learned in the present model
is a pure feedforward motor program for one ini-
tial position/target pair, the learning approach is
more generally applicable at two levels. First,
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it would be possible to learn to compute the
pulse-stepparametersas a function of the current
state of the arm and target position, allowing the
model to learn reaching movements over the en-
tire workspace. Second,in the context of a more
realistic cerebellar learning model, it is possibleto
learn to combine contextual information, motor ef-
ferencecopy, and delayedsensoryinputs in order to
compute, in an on-line fashion, the outgoing motor
commands[Fagg et al., 1997, Barto et al., 1998].
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Abstract

Insects solve complex adaptiv e motor control prob-
lems without the bene¯t of a cerebellum. Analysis
of the sensory-motor networks underlying the control
of leg movements in insects reveals neural elements
that perform functions similar to those often associ-
ated with the cerebellum: adjusting re°ex gains and
time constants, coordinating the activit y of multiple
joints, modulating the amplitude and timing of under-
lying pattern generator outputs, and adapting motor
output to account for changesin behavioral context. In
constructing neurally-inspired controllers for robots, it
is useful to examine both vertebrate and invertebrate
control system architectures to look for common func-
tional features which may have quite di®erent neural
implementations.

7.1 Cereb ellum in vertebrate
motor control

Despite decadesof intense research, the precise
functional role of the cerebellum in vertebrate mo-
tor control is still largely unresolved. There seems
to be a general consensusthat the cerebellum is
somehow involved in processesof adapting, cali-
brating, coordinating, and tuning motor output,
although there are many di®erent models for how
this comesabout. The classicMarr-Albus models
view the cerebellum as a perceptron-basedasso-
ciative memory that controls elemental movements
(Marr 1969,Albus 1971). More recently , other in-
vestigators have described the functional role of
the cerebellum in terms of controlling an array of
adjustable pattern generators(Houk et al., 1996),
as a meansfor establishing context-responselink-
ages(Thach 1996),asan internal model of inverse-
dynamics (Kawato and Gomi, 1995)and as an op-
timal state-estimator (Paulin, 1993).

7.2 In vertebrate motor control:
Insect adaptiv e leg movements

Insects are quite adept at walking over irregular
terrain. Under such circumstances, they do not

userigid gaits asobservedwhenwalking on smooth
horizontal surfaces. Instead, as the insect negoti-
ates obstaclesand gaps in the terrain, individual
legand joint movements exhibit a wide variation in
amplitude, timing, and duration as the insect ad-
justs its motor output in order to move e±ciently
through the environment (Pearson and Franklin,
1984).

Adaptiv e leg movements in the insect are con-
trolled by neurons in the thoracic ganglia which
canbeclassi¯ed into four groups: sensorya®erents,
spiking interneurons,nonspiking interneurons,and
motor neurons. These groups are interconnected
in a predominantly feedforward manner, however
there are extensive recurrent connections within
the interneuron layers. Fig. 7.1 summarizes the
connectionsbetweenthesedi®erent groups of neu-
rons (Burrows, 1992;Laurent 1993).

Among the many senseorgans found on an insect
leg, three classesof mechanoreceptorsare relevant
for locomotion control. Chordotonal organs pro-
vide information about the relative position and
movements of individual limb segments, campani-
form sensillameasurelocal forceson segments, and
tactile hairs and spinessignalcontact with external
objects or other limb segments (review: Delcomyn
et al. 1996).

Spiking interneurons typically receive information
from just oneof thesethree sensorymodalities, and
there is evidencethat these neurons are arranged
topographically within the ganglion. Hence spik-
ing interneuronscan be thought of as forming uni-
modal, topographic sensorymaps.

Non-spiking interneurons (NSIs) are so named
becausethey do not generate action potentials,
rather they communicate by gradedsynaptic trans-
mission. NSIs have more complicated receptive
¯elds than those of the spiking sensory interneu-
rons and often have multimo dal receptive ¯elds.
Interestingly, NSI activit y is frequently responsive
to sensorysignals that arise from di®erent modal-
ities in the samebehavioral context.
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Figure 7.1: Organization of the neural circuitry controlling leg movements in the insect thoracic ganglion (from Burrows, 1992). Sensory a®erents
arise from senseorgans on the leg. A®erents make contact with two classesof interneurons: spiking interneurons are sensory neurons; non-spiking
interneurons are premotor neurons. Spiking and non-spiking interneurons make synapsesonto motor neurons, which drive the leg muscles. In
insects, some non-spiking interneurons have functional roles similar to those associated with the cerebellum in vertebrates.

NSIs are important premotor elements involved in
posture control and locomotion. SomeNSIs form
central pattern generating (CPG) networks, while
other NSIs appear to modulate the the proper-
ties of the CPG output (BÄuschges, 1995). Some
NSIs receive input from inter-segmental interneu-
rons and are thus involved in coordinating ac-
tivit y between legs. Other NSIs are involved in
controlling the gain and time constants of local
leg re°exes (BÄuschges and Schmitz, 1991). NSIs
receive, integrate, and process information from
multiple sensorymodalities and drive functionally-
related groups of leg motoneurons during walking
(Schmitz et al., 1992).

From the above description, it can be seen that
NSIs in the insect thoracic ganglia are associated
with functions similar to thoseassociated with the
cerebellum in vertebrate motor systems. They are
involved in adjusting re°ex gains and time con-
stants, coordinating the activit y of multiple joints,
modulating the amplitude and timing of underly-
ing pattern generatoroutputs, and adapting motor
output to account for changesin behavioral con-
text.

7.3 Substrate-¯nding re°ex

In insects, a stereotyped searching movement of
an individual leg can be elicited when support is
removed from that leg. When the leg encoun-
ters a suitable substrate, it attempts to establisha
foothold. This behavior is known as the substrate-
¯nding re°ex (BÄassler 1993). To explore someof
the adaptive motor control capabilities of the neu-
ral circuitry of the thoracic ganglia, we have imple-
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Figure 7.2: A two-joint insect-like robot leg. Each joint is powered by
a servo actuator with muscle-like dynamic properties. Potentiometers
provide joint anglemeasurements;strain gaugesprovide force and touch
measurements.
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Figure 7.3: Substrate-¯nding behavior performed by a two joint robot
leg. a) The leg encounters an object during the downward sweep of a
search cycle; once contact is made, the leg slidesup until it just clears
the object and then comes back down to establish a foothold. b) The
leg encounters the object during the upward sweep of a search cycle
(from Ding and Nelson, 1995).
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mented a biologically-inspired model of the insect
substrate-¯nding re°ex in a 2-joint robot leg (Ding
and Nelson, 1995). The structure of the robot leg
is shown in Fig. 7.2.

The robot leg is controlled using a neural architec-
ture similar to that shown in Fig. 7.1. The con-
troller dynamics are such that when the leg is in
contact with the substrate and bearingweight (sig-
naled by femur stress), the systemmovesto a sta-
ble ¯xed point corresponding to the stancephaseof
the substrate-¯nding behavior. In the absenceof a
femur stresssignal, the systemconvergesto a peri-
odic attractor corresponding to the search phaseof
the behavior. When the leg encounters an object
during the search phase(signaledby an increasein
tibia stress), the controller output gives rise to a
coordinated pattern of movements in which the leg
slidesup along the object maintaining a relatively
constant tibia stress,until it just clears the object
signaledby a drop in tibia stress,and comesback
down to ¯nd support on top of the object. Typical
robot leg tra jectories are shown in Fig. 7.3.

7.4 Summary

The substrate-¯nding re°ex is a simple model sys-
tem for exploring adaptive motor control strategies
in insects. In this system, non-spiking interneu-
rons (NSIs) have functional roles similar to those
associated with the cerebellum in vertebrate mo-
tor systems. They are involved in adjusting re°ex
gainsand time constants, coordinating the activit y
of multiple joints, modulating the amplitude and
timing of underlying pattern generator outputs,
and adapting motor output to account for changes
in behavioral context. In constructing neurally-
inspired controllers for robots, it is useful to exam-
ine both vertebrate and invertebrate control sys-
tem architectures to look for common functional
featureswhich may have quite di®erent neural im-
plementations.
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Abstract

We present a learning neural model, based on the cir-
cuitry and functional connections of the cerebellum, to
control reaching movements of a simulated biomimetic
manipulator.

Basing our work on the [Schweighofer et al., 1997b]
model, we propose a new system that utilizes the
servo mechanism of the spinal re°ex circuitry as a
key element to allow kinematic control of slow move-
ments while learning predictiv e dynamic compensa-
tion, and demonstrate the abilit y to rapidly learn to
control stereotyped fast movements. The key elements
of the model are 1) parallel postural and dynamics
controllers [Kata yama and Kawato, 1991, ]; 2) learn-
ing neural network models explicitly modeled on the
physiology of the cerebellum; 3) detailed neural model
of spinal re°ex circuitry; and 4) a muscle-like actuator
model basedon real arti¯cial muscles.

Simulation results show the e®ectivenessof the sys-
tem to learn accurate tra jectory control for fast move-
ments.

8.1 In tro duction

[Schweighoferet al., 1997a] proposed a model of
the role of the intermediate cerebellum in the
control of voluntary movement. The model em-
beds a neural network, based on known cerebel-
lar circuitry , in a simulation of the mammalian
motor control system to control a 6-muscle 2-
link planar arm. In this model the cerebellar
module acts in parallel with a controller com-
posed of a proportional-derivative feedback con-
troller, and a feedforward controller (PDFF),
the latter implementing a crude inverse dynamic
model of the arm. The simulation results of
[Schweighoferet al., 1997b] suggestthat this cere-

bellar model was able to learn parts of the in-
versedynamics model not provided by the PDFF
controller, as indicated by an improved tracking
performanceof desired tra jectories after learning.
However, the system required a large number of
training repetitions and could only learn to con-
trol relatively slow movements.

Basing our work on the Schweighofer model, we
proposea new systemthat utilizes the servo mech-
anism of the spinal re°ex circuitry as a key ele-
ment to allow kinematic control of slow movements
while learning predictive dynamic compensation,
and demonstrate the abilit y to rapidly learn to
control stereotyped fast movements. The key el-
ements of the model are 1) parallel postural and
dynamics controllers; 2) learning neural network
modelsexplicitly modeledon the physiology of the
cerebellum; 3) detailed neural model of spinal re-
°ex circuitry; and 4) a muscle-like actuator model
basedon real arti¯cial muscles.

8.2 The mo del

The model uses parallel inverse static and
dynamic controllers as shown in Figure 8.1
and is conceptually similar to the paral-
lel hierarchical control scheme proposed by
[Katayama and Kawato, 1991], where an inverse
static model (ISM) and inverse dynamic model
(IDM) are connectedin parallel. The ISM learns
the part of the inverse dynamics that depend
only on posture, such as gravit y terms, while
the IDM learns terms that depend on derivatives
of joint angles. Such an idea is also related to
[Atkesonand Hollerbach, 1985] who showed that
separating the static and dynamic terms of the in-
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Figure 8.1: Simpli¯ed schematic of the control system. The trajectory generator de¯nes a kinematic trajectory for each joint. The ISM provides
alpha-muscle control input to de¯ne an equilibrium at the current desired position, but also generates static and dynamic gamma drive for the
spindles to detect length and velocity errors. The IDM (implemented as a cerebellar model) usesthe sensedmuscle tension produced by the spinal
re°ex circuitry as teacher signal and learns to associate this with the system state (provided by the trajectory generator and muscle spindles) to
provide corrective control signals in a feed-forward manner.

verse dynamics, gives the dynamic terms simple
linear scaling properties for changesin speed and
load.

8.2.1 Plan t mo del

To provide a more realistic test-bed of the cerebel-
lar model, we have provided detailed simulations
not only of cerebellum but also of a two-segment
planar arm and the spinal segment circuitry .

A neural model of the spinal segment circuitry
implemented the motor servo. We used a
model that was implemented in DSP hardware by
[Chou and Hannaford, 1996b] for single joint pos-
ture control. As shown in Figure 8.2(A), the model
incorporates Alpha- and Gamma-motoneurons,
Renshaw cells, Ia - and Ib interneurons.

With an eye on robotic implementation, the plant
simulated wasa two-segment planar arm, actuated
by 6 antagonistic McKibb en pneumatic arti¯cial
muscles[Chou and Hannaford, 1996a] as shown in
Figure 8.2(B). In addition, Ia-pathway kinematic
feedback was provided from each muscleby static-
and dynamic spindle pairs: separategamma drive
inputs seta \desired" length and velocity, the spin-
dle output is a clipped (positive only) function of
the position or velocity error. Simulated Golgi ten-
don organs provide force feedback to the Ib in-
terneurons.
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Figure 8.2: A: The neural circuit used to implement a spinal segment
(redrawn from [Chou and Hannaford, 1996b]). B: Schematic represen-
tation of the muscle attachments on the 2-link arm.



30 CHAPTER 8. CEREBELLAR CONTROL OF A SIMULA TED BIOMIMETIC MANIPULA TOR

8.2.2 Postural control

Our postural module (ISM) providesalpha drive to
set muscletensionsso that the limb would have an
equilibrium point at the desiredposition. Muscles
are often modeled as damped springs with resting
length determined as a function of the alpha mo-
tor command [Ozkaya and Nordin, 1991]. The re-
sult of this property is that a given vector of motor
commandsto a set of antagonistic musclesde¯nes
a point attractor for the limb in joint space. The
equilibrium-p oint (EP) theory [Bizzi et al., 1984,
Bizzi et al., 1992, Feldman, 1986] proposes that
movements are e®ectedby moving this equilib-
rium point from the starting to target con¯gura-
tion. The model has beencriticized becausemea-
sured musclesti®nessvalueswould lead to unreal-
istic tra jectories. [McIntyre and Bizzi, 1993] have
suggestedthat the spinal re°ex path could serve
as a low latency position and velocity feedback
servo, but [Schweighofer, 1995] hasshown that fast
multi-join t movements still require some feedfor-
ward compensation.

We propose that the ISM also drives intrafusal
musclespindlesthrough the gammasystemsothat
deviations from the desired position would acti-
vate the spinal servo to provide additional restor-
ing force. This feedback systemensuresthat novel
tra jectoriesareapproximately followed,but assug-
gestedby [Gomi and Kawato, 1993], also servesto
train the IDM as described below.

8.2.3 Cereb ellar in verse dynamics
controller

In parallel with the postural controller, alpha mo-
toneurons in the model receive a second input
from the cerebellar module (related to Gomi and
Kawato's IDM) which implements a nonlinear pre-
dictiv e regulator by learning the inversedynamics
of the plant and spinal circuit. The intermediate
cerebellum receives extensive input from motor-
and premotor cortex (which we model as contain-
ing the representations of the descendingpostural
command, and only desired joint position and ve-
locity), as well as position and velocity error feed-
back from muscle spindles via the dorsal spinal
tract. We propose that the intermediate cerebel-
lum provides predictive assistive alpha-drive to re-
duce tra jectory errors during fast movements.

We used the samecerebellar module described in
a previouspaper for learning visuo-motor transfor-
mations when throwing while wearing wedgeprism
glasses[Spoelstra and Arbib, 1997]. All cells are
modeled as leaky integrators with membrane po-
tential de¯ned by

¿
dm
dt

= ¡ m + x (8.1)

where x is the current synaptic input. The output

of each cell is a positive real number representing
the instantaneous ¯ring rate and is derived from
the membrane potential as

y(m) =
ym ax

1 + exp(m ¡ o
s )

(8.2)

with o and s parameters that determine respec-
tiv ely the baseline ¯ring rate and linear range of
the cell.

Although the model is rather high-level, we have
tried to incorporate the basic circuitry of the cere-
bellum [Ito, 1984]. Inputs arrive via mossy ¯b ers
to the granule cells whoseaxons bifurcate to form
parallel ¯b ers in the cerebellar cortex. Each Purk-
inje cell receivesinput from a large number of par-
allel ¯b ers (PF) and oneclimbing ¯b er (CF) origi-
nating in the inferior olive (IO). The Purkinje cells
are the soleoutput from the cerebellar cortex and
inhibit the nuclear cells. Using mechanismsbased
on current theories of cerebellar learning as long
term depression(LTD) of parallel ¯b er-Purkinje
cell synapsesafter coactivation of parallel- and
climbing ¯b ers, and by incorporating known re-
current projections betweencerebellar nuclearcells
and inferior olive (IO) cells, we demonstrated that
this produceda stable input-follo wing learning sys-
tem.

8.2.4 Learning

The operation of the IDM is de¯ned by the infor-
mation in the climbing ¯b er system. In the model
the IO comparesthe output of the IDM with the
muscle tension produced by the spinal feedback
circuitry and descendingcommandscombined, to
drivethe IDM to generatecorrectivecontrol signals
in predictivemanner to eventually replacethe feed-
back controller. By subtracting the tension pro-
duced by the contralateral muscle, co-contraction
is minimized to producee®ective reciprocal muscle
activations.

The servo feedback controller gain is limited by
delays, which lead to errors during fast movements.
If the feedback controller is placedon the sameloop
with the learning inverse dynamics controller (as
in the standard feedback-error learning scheme),
delays cause the controller to produce a control
signal (used for training the IDM) given by:

¿f b = K p[µd(t) ¡ µd(t ¡ ¢ T)]: (8.3)

The problem is that even if the tra jectories were
perfect, the feedback controller would continue to
generate torques that would lead to an incorrect
inversedynamicsmodel. By detecting the errors at
the spindles,though, the feedback torque becomes

¿f b = K p[µd(t ¡ ¢ T) ¡ µd(t ¡ ¢ T)]: (8.4)

The delay is on the forward path and can be
eliminated by providing the same signal at time
(t ¡ ¢ T).
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A crucial element is the concept of synaptic eligi-
bilit y [Sutton and Barto, 1981, Klopf, 1982]. The
processof LTD has been shown to involve second
messengerswhoseconcentration tags synapsesel-
igible for modi¯cation. [Schweighoferet al., 1996]
has suggestedthat the secondmessengerconcen-
tration might follow secondorder dynamicsto peak
at a speci¯ed instant after parallel ¯b er activit y,
and that this could be used to solve the temporal
credit assignment problem in saccadeadaptation
where the error information is available only after
the control action. We usedthe sameprinciple and
show that the cerebellum learns to associate cur-
rent control actions with prior states and learns to
act as a predictive feedforward controller.

A further e®ectof the synaptic eligibilit y trace is to
smooth the control signal over the temporal evolu-
tion of the movement, favoring solutions that min-
imize motor command changes.

The learning rule for each PF-PC synapsecan be
formalized as:

¢ w(t) = ¡ ®e(t)[yI O ¡ yI O (0)] (8.5)

with yI O the ¯ring rate of the climbing ¯b er input
and e(t) de¯ned as

¿
de1

dt
= ¡ e1 + yGC (8.6)

¿
de
dt

= ¡ e+ e1 (8.7)

with yGC the ¯ring rate of the parallel ¯b er. From
Equation (8.5) it is clear that IO ¯ring above base-
line will produce LTD, while ¯ring below baseline
will produce LTP.

8.3 Results

Simulation results to show the e®ectivenessof the
systemto learn accurate tra jectory control for fast
movements is presented in Figure 8.3. Movements
are made from a central position to eight radial
targets at a rate of 0.6sper movement. As can be
seenin Figure 8.3(D), accurate tra jectories can be
generatedin a small number visits to each target.

8.4 Conclusion

We have implemented a modi¯ed version of the
parallel hierarchical control model proposed by
[Katayama and Kawato, 1991] and have shown
that our cerebellar network was able to learn the
control function. The new features of our model
are

1. the use of the spinal re°ex feedback cir-
cuit asa sourcefor training signalsto the
IDM;

2. an ISM that also generatesgamma-drive
sothat muscle-stateerrors canbedetected
at the spindleswith no delay;

3. the use of synaptic eligibilit y to learn in-
verse dynamics feedforward control, and
also to force smooth control actions.
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Abstract

We describe in this paper models and an apparatus of
sensory-motor integration in the context of a micro-
robot. The models attempt to represent the interac-
tions betweenthe pre-frontal cortex, the basal ganglia,
the ventral tegmental area and the cerebellum. We
describe various experiments to perform simple track-
ing and obstacle avoidance tasks. The micro-rob ot,
a Khepera, is equipped with infra-red proximit y sen-
sors and two motors, and is connected to a personal
computer through a serial line. All neural computa-
tion is performed on the personal computer and the
motor commands are communicated to the robot via
the serial line. Learning and motor decisions are per-
formed in real-time within a multi-threaded environ-
ment. Two sensory-motor integration models are de-
scribed. The ¯rst implements a simple decisionmaking
system inspired from temporal di®erencelearning and
usesthe sensory inputs and the last motor commands
to produce the next motor commands. The second
model augments the ¯rst by intro ducing a simple ab-
stract model of a cerebellum acting as a predictor of
the robot's environment. The output of the cerebellum
model is used as an additional input to a network sim-
ilar to the ¯rst model. Our experiments show that the
inclusion of the predictions of the environment greatly
improves the performance of the robot in tracking ex-
ternal sources. The experiments will be demonstrated
at the NIPS'97 workshop on \Can Arti¯cial Cerebellar
Models Compete to Control Robots?".

9.1 In tro duction

Sensory-motorintegration is about combining sen-
sory cuesand motor information in order to gener-
ate motor commands,typically to maximize future

sensoryinformation and related awards. Sensory-
motor integration is a corner-stone of active per-
ception in the context of roving robots.

The development of biologically plausible models
of sensory-motor integration is receiving an in-
creasingattention from the robotics and neuromor-
phic engineering communities. Researchers have
investigated functional sensory-motor integration
models involving roles for the pre-frontal cortex
(PFC), the basalganglia(BG), the ventral tegmen-
tal area (VT A), and more recently the cerebellum.
It has been hypothesized[16, 7, 43] that the pre-
frontal cortex provides someworking motor mem-
ory, the basalgangliaprovidesdecisionmaking and
that VTA is involved in reward generation.

We describe in this paper neural computation ar-
chitectures for sensory-motor integration for sim-
ple obstacle avoidance and source tracking. The
architectures are based upon simpli¯ed abstract
models reported in [16, 7, 43, 45, 6]. We have
tested our models using a micro-robot (Khepera)
and our experiments show that learning is achieved
e±ciently and in real-time on an averagedesktop
personal computer. Two sensory-motor integra-
tion models are described. The ¯rst implements a
simple decisionmaking systeminspired from Tem-
poral Di®erence(TD) learning and usesthe sen-
sory inputs and the last motor commandsto pro-
ducethe next motor commands.The secondmodel
augments the ¯rst by intro ducing a simpleabstract
model of a cerebellum acting as a predictor of the
robot's environment (sensory input). The output
of the cerebellum model is used as an additional
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Figure 9.1: Simple sensory-motor integration architecture.

input to network similar to the ¯rst model. Our
experiments show that the inclusion of the predic-
tions of the environment greatly improvesthe per-
formanceof the robot in tracking external sources.

The paper is structured as follows. In Section 9.2
we describe the simple sensory-integration model
that attempts to model the interactions between
the pre-frontal cortex (PFC), basal ganglia (BG)
and the ventral tegmental area. This model is
tested in obstacle avoidance and source tracking
tasks. We then describe the motivations in aug-
menting this model with a cerebellum-basedpre-
diction model. Section9.3 reviewsbiological back-
ground on the role of the cerebellum in motor
learning and presents the sensory-motor architec-
ture augmented with an abstract model of a cere-
bellum.

9.2 A simple sensory-motor
in teraction mo del

9.2.1 Arc hitecture

The simple model we describe here is based the
Sutton-Barto TD learning approach [45] and the
Dayan-Sejnowski predictive Hebbian learning ar-
chitecture [33]. The architecture consists(seeFig-
ure 9.1) of two single layer networks, the ¯rst be-
having asan \action" network and the secondacts
as predictor of the expected future reward. The
inputs to both networks are the micro-robot sen-
sory inputs (6 infra-red proximit y sensorsat the
front side of the robot) and the last values of the
left and right motor commands. The action net-
work has two outputs producing the left and right
motor commandsby applying a sign function and
then multiplying the results by a value correspond-
ing to a constant speed.

9.2.2 Obstacle avoidance

The basic operation of the networks and its learn-
ing rule are depicted in Figure 9.2 for the object
avoidance case. Note in this casethe reward and
learning are implemented as follows:

1. a clearancemeasureis computedaccording
to the infra-red proximit y sensors. Only
sensorvalues above a threshold are used
(set to 60 out of 1023 for our robot).
The total sensoryinputs are accumulated
and then mapped to a [0,1] range using a
tanh() function. The clearanceis one mi-
nus this value.

2. if the clearance value is zero, no obsta-
cle in proximit y is present and the motor
speed are set to maximum forward (2 in
out case). We restart from 1.

3. the robot is approaching an obstacle. The
learning is triggered and the reward is to
achieve total clearance again. The ex-
pected reward prediction error ± is com-
puted [43] according to

±(t) = clearance(t) + ° V (t + 1) ¡ V (t)
(9.1)

When learning, ± is then used to update
the network according to

eij = (1 ¡ ¸ )eij + ¸ in j out i (9.2)

wij = wij + ´ ±eij (9.3)

Where eij represents the eligibility of
weight w[i ][j ] (from input j to output i).

Therefore, in the caseof a simple obstacle avoid-
ance task, the reward is the clearance. While the
robot is in the clear no learning is performed and
the robot will continue its straight-a-head move-
ment.

The networks above have been implemented in
C++ and run on a PC communicating with the
micro-robot via a serial line. In the caseof obstacle
avoidance the obstacleswere the walls of the box
surrounding the robots, or objects deposited inside
the box. The systemworks very well with the net-
work learning to turn from the ¯rst encounter with
a wall or any other object it encounters. The ex-
periments will be demonstrated at the workshop.

9.2.3 Homing & Tracking Mo ving Ob jects

In the caseof homing and tracking of moving ob-
jects a programmable infra-red emitting hardware
was developed. It consistsof infra-red light emit-
ting diodes(LEDs) organisedin a horizontal array.
When the LEDs are activated, the robot's proxim-
it y sensorswill detect the radiation and will con-
fuseit with its own radiation that it usesto detect
proximit y to objects. LEDs with 8 degreesradia-
tion angle were used in our setup. Each LED in
the array can be dynamically switched on or o®by
software. By switching the appropriate sequenceof
LEDs, we can simulate objects (to a degreeof dis-
cretisation that dependson the robot sensorread-
ing speed) moving at various speeds.
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This hardware setup was used in our homing and
tracking experiments. For homing, at least one
LED is activated and the robot positioned at vari-
ousangles. In the tracking experiments, the LEDs
are switched on/o® in groups of 2 or more. The
adjacent LEDs are activated as to keep1 LED ac-
tivated in 2 consecutive groups. The speedof LED
group switching is controlled by software and can
be at least of 20ms.

In the homing and tracking tasks, the ¯rst experi-
ments we describe here usea network architecture
identical to that of Figure 9.1. The operation pro-
cedureis shown in the °owchart of Figure 9.3 and
the de¯nition and computation of the reward is
done as follows:

1. a reward measurebasedon the proximit y
sensorsis computed (threshold of 60 out
of 1023 is used). The tanh() of the total
sensorvalues is then taken as the reward.

2. if the reward is above a threshold (0.0 in
our experiments) the output of the \ac-
tion" network is used to drive the robot
left and right motors, and learning is ac-
tivated. The predicted reward error ± is
computed using

±(t) = reward(t) + ° V (t + 1) ¡ V (t)
(9.4)

3. otherwisea random move is performed us-
ing a uniform random number generator.

The weights of the network are updated using
Equation 9.3.

In the homing experiments, the system starts by
\searching" and seekinga reward, doing random
moveswhen the present reward is below a thresh-
old. After few turns searching for the infra-red
source, the robot homes on it. In the tracking
experiments, the system will behave similarly but
will continue tracking the \moving" LEDs until it
homeson a LED which e®ectively endsthe trial.

Again, the experiments will be shown at the work-
shop.

9.3 Additing an abstract mo del of
a cerebellum

The cerebellum is involved in motor timing [18],
motor coordination [15], motor learning [32, 12]
and sensorimotor integration [44]. Cerebellar con-
tributions have been inferred in situations as di-
verseas timing of the conditioned eyelid response
[41], shifting of attention [1, 10], adaptation of the
vestibulo-ocular re°ex [27] and coordination of eye
and hand motor systems[48]. Someof thesestud-
ies also suggest that the cerebellum may be in-
volved in cognitive aspects of information process-
ing [4, 23, 25, 31, 46, 42]. Several theories of cere-
bellar function have been proposed, including the
original motor learning theoriesof Marr (1969), Al-
bus (1971) and others [2, 8, 9, 11, 14, 17, 21, 20,
24, 28, 30, 36, 37, 38, 39, 47]. Nevertheless,few of
these theories have provided a consistent view of
the cerebellum's role in these diverse tasks. The
possibility that the common thread across these
di®erent tasks is a predictive abilit y that the cere-
bellum brings to the central nervous system is the
focusof our investigation. The predictive function-
alit y of the cerebellum may include prediction of
neural signals carrying sensory, motor, and even
cognitive information. The predictive functional-
it y may go beyond direct prediction and encom-
passpredictive control in motor tasks. For exam-
ple, when sensoryand motor signalsare combined
in the cerebellum under the control of motor er-
rors, the outcome may be the implementation of a
predictive controller. The di®erencewith previous
predictivemodelsof the cerebellum is in the details
of the implementation.

9.3.1 Anatom y and predictiv e
functionalit y

The basic anatomic and idea of the approach is
shown in ¯g. 9.4. The deep cerebellar nuclei and
the cerebellar cortex form together in our frame-
work a predictive machine that is under the regu-
latory control of the inferior olive. The predictions
being constructed are predictions of neural activi-
ties related to the excitatory inputs reaching the in-
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Figure 9.4: Simpli¯ed cerebellar anatomy and diagram of the hypothesis
on cerebellar functions.
Anatomy: Inputs to the cerebellum enter either as mossy ¯b ers con-
tacting granule cells or as climbing ¯b ers coming from the inferior olive.
The mossy ¯b ers contact granule cells and neurons in the cerebellar
nuclei. One mossy ¯b er contacts approximately 400 to 1000 granule
cells in one folia of the cerebellum. One mossy ¯b er can also run in
other folia. Each granule cells receive inputs from 1 to 7 mossy ¯b ers.
Granule cell axons form the parallel ¯b ers which contact the dendrites
of Purkinje cells. One Purkinje cell may have from 100 000 to 400
000 parallel ¯b ers passingthrough its dendritic tree, but only 20% (80
000) may have synaptic contacts { these are estimates calculated from
di®erent assumptions on synaptic contacts. The length of a parallel
¯b er ranges from 0.6 mm in the mouse to 2.6 mm in man; it passes
through the dendritic tree of about 225 Purkinje cells, and synapses
presumablyonto 45 only. The climbing ¯b er has multiple contacts with
Purkinje cell dendrites. Each Purkinje cell receive only one climbing
¯b er and one climbing ¯b er contact approximately ten Purkinje cells.
The climbing ¯b er also sendscollaterals to the deep cerebellar nuclei
which receiveprojections from Purkinje cells contacted by the climbing
¯b er. Parallel ¯b ers drive Purkinje cells to ¯re simple spikes at a rate
of 20 to 100 Hz, generating modulated inhibition at the deep cerebel-
lar nuclei. Climbing-¯b er activit y produces complex spikes in Purkinje
cells; these short bursts (10 ms) of about ¯ve spikes strongly inhibits
the deep cerebellar neurons. All connections are excitatory except for
the Purkinje cells projections which are inhibito ry. The inferior olivary
neuronsare electrotonically coupled, this is indicated by junctional con-
tacts between short dendrites. They received two types of inhibito ry
gabaergic inputs from the deep cerebellar nuclei, one type terminates
at the dendro-dendritic gap junctions, and another type terminates at
the perikaryon (cell body) [34, 35, 3, 29]. Hypothesis: Predictions
or predictive motor commands are encoded in the deep cerebellar nu-
clei with contributions from the Purkinje cell inputs they receive from
cerebellar cortex. The actual representation may depend on whether
the inferior olive receivesdirect inhibito ry input feedbackfrom the deep
cerebellar nuclei or indirect inhibito ry inputs from other nuclei. The
gabaergic ¯b ers terminating at the perikaryon are used to calculate the
prediction error. The ¯b ers terminating at the gap junctions may be
used to modulate the number of olivary neurons ¯ring in synchrony,
and therefore the number of climbing ¯b ers reporting a particular pre-
diction error. This consequently may change the number of Purkinje
cells involved in a particular prediction.

ferior olive. Depending on the sourceof inhibitory
inputs to the inferior olive, the output of the cere-
bellum are predictions or predictive control com-
mands. The inhibitory inputs from the deepcere-
bellar nuclei to the inferior olive may carry a de-
layed feedback of the predictions being established
in the cerebellar nuclei. The internal circuitry of
the cerebellar nuclei and feedback connectionswith
other nuclei may provide the time delays required
for the hypothesis [30].

9.3.2 Prediction in the cereb ellum:
Biological evidence

Experimental results have shown that a predic-
tiv e representation is constructed in the cerebel-
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Figure 9.5: Augmented sensory-motor integration architecture including
an abstract model of a cerebellum.

lum [13]. Monkeys were trained to grasp, lift and
hold an object betweenthumb and index ¯nger for
one second. On selected blocks of trials, a per-
turbation was applied to the held object to simu-
late object slip. Purkinje cells located in the hand
representation area lateral to the vermis in lob-
ules IV-VI acquired an anticipatory response to
the perturbation in order to stabilize the position
of the hand. They also showed a gradual extinc-
tion of the anticipatory responseafter the pertur-
bation was withdrawn. The contribution of the
cerebellum in this task is similar to its role in eye-
lid conditioning. In eyelid conditioning, the con-
ditioned response timing is apparently controlled
by the anterior lobe of the cerebellum and occurs
before the unconditioned stimulus [41, 40]. Thus,
one may infer that the cerebellum participates in
constructing a predictive responsefrom the condi-
tioned stimuli. Purkinje cell responsesin the °oc-
culus and ventral para°occulusare modulated dur-
ing smooth pursuit eye movements [44]. Predictive
control of smooth pursuit eye movements occurs
for complex two-dimensional tracking tra jectories
in monkey [26] and human [5]. The cerebellum is
therefore a possiblesite for the predictive learning
of smooth eyemovements, and it hasbeenmodeled
with this perspective [22].

The structure of the cerebellum, and the great con-
vergenceof mossy¯b er inputs projecting from all
areas of the brain and senses,make the cerebel-
lum a very suitable brain area to construct short-
term predictions and predictive control commands
which can be further processedby the central ner-
vous system. The cerebellum is the only place
in the brain where cells receive such a massive
number of inputs, and with such a diverse input
representation: there are more granule cells than
all other cells in the brain combined. The input
representation, presumablenonlinear, is extremely
rich since one mossy ¯b er contacts between 400
to 1000 granule cells, and a granule cell receives
from 4 to 7 mossy ¯b ers. An extremely large
number of di®erent input combinations, presum-
ably nonlinear, are then available to the Purkinje
cells. Such diversity would be expected in order
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Figure 9.6: Basic operation of the sensory-motor network of Figure 9.5
in the caseof simple obstacle avoidance.

to construct predictions, and predictive controllers
from a changing environment where causal rela-
tionship betweenevents may be changing and may
depend on context. As an example,large represen-
tation at the inputs is required for building inverse-
dynamicsmodel for motor control [19]. The combi-
nation of at least 26 precisenonlinear terms made
of nine state variables is necessaryto construct
the inverse-dynamicsmodel of a three degreesof
freedom robot manipulator. By analogy, the rich
representation at the input of the cerebellum may
provide the ¯rst stageto construct such nonlinear
terms.

9.3.3 Predictiv e Mo del Arc hitecture

The architecture of the model augmented with a
functional model of the cerebellum is shown in
Figure 9.5. In this architecture, the cerebellum
is predicting the sensoryenvironment at some¢ t
from the present. The operation of the augmented
model is shown by the °owchart of Figure 9.6. The
length ¢ t is determined by several factor including
the speed of the PC, the speed of the robot, and
the neuron unit delays in our model of the cerebel-
lum. In the experiments described below ¢ t is not
¯xed and varies between10-20ms.

The experiments we have conducted consisted of
tracking a ¯xed and moving external infra-red
source. Our aim was to investigate:

² the prediction of the robot sensory envi-
ronment using the cerebellar model.

² the impacts of providing the sensory
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Figure 9.7: Weights of left and right motor outputs of the augmented
sensory-motor integration network. The inputs are current infra-red
sensor (1-6), predicted infra-red sensors by the cerebellum (7-12), last
left and right outputs, and the bias. For groups 1-6 and 7-12, the
smaller index represents the rightmost sensory input.

prediction as an additional input to
the sensory-motor integration model de-
scribed in Section 9.2.

The architecture was operated as follows (see
°owchart in Figure 9.6):

The original sensory-motor integration and the
cerebellum model were operated in independent
threads with the Win32 multithreaded operating
system of the PC. The SMN and the CBN both
start learning from random states. When the SMN
requiresthe CBN outputs it sendsa messageto its
thread messagequeueand wait for a reply with the
prediction. It then usesthis prediction to proceed
with its operations. The delays in the messaging
system are about 20 ms on average.

The experiments we have performed(which will be
shown at the workshop) shows an improved per-
formance in the tracking. Not only that the robot
movements becomessmoother but it alsohomesat
the target faster.

We show in Figure 9.7 the weights of the sensory-
motor integration network (action network) in the
tracking case.Note the mapping performed by the
left and right weights for the current sensoryinputs
(inputs 1-6 in the plots) is straight forward: The
weights are the largest for the left sensoryinputs.

9.4 Conclusions

We have described in this paper architectures
for sensory-motor integration and their applica-
tions to simple obstacle avoidance and tracking
by a micro-robot. We have shown that predic-
tiv e Hebbian learning can be used to train the
robot in real-time. We have also described an
augmented sensory-motor integration architecture
that includes a model of the cerebellum. Our ex-
periments show that the robot movements become
smoother and it homeson targets faster.
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